
SMALL-SCALE FLOWS AND SURFACE EFFECTS IN 

THE HYDROMECHANICS OF MULTIPHASE MEDIA 
PMM Vol.35, W3, 1971, pp.451-463 

P. I. NIGMATULIN 

(Moscow) 
(ReceivedNovember 17, 1970) 

On the basis of concepts about multiphase continuous media expounded in Cl], 

equations for mechanics of a two-phase dispersed mixture are obtained within the 

framework of a “two-pressure”, two-velocity and two-temperature model with 
consideration of small-scale motion near the inclusions, of phase transitions, of 

surface energy, and of compressibility of both components. The small-scale motion 
is here understood to be the motion of the carrier medium near the inclusions due 
to their radial pulsation and relative motion in the carrier phase. The introduction 

of a surface phase made it possible to utilize equations of heat influx for each 
phase in the form which leads to a more convenient method for taking into con- 
sideration effects related to phase transformations. The basic concepts of thermo- 

dynamics for such media are examined. An explicit expression is obtained for 

production of entropy of the mixture. Proceeding from this expression it is possible 

to formulate linear phenomenological relationships which characterize the phase 
interactions. This procedure is carried out for the example of the equation of 
kinetics of phase transitions. 

As an area of application where it is necessary to take into account the indi- 

cated effects simultaneously, it is possible to point out the flow of fluids containing 

bubbles of gas (or vapor). A particular application is the propagation of perturba- 
tions in such mixtures. when pressures and temperatures are sufficiently close to 
the critical, it may be necessary to take into account the compressibility of both 
the vapor and the liquid. 

In more special cases the hydromechanical equations of fluid motion with gas 

bubbles were investigated in papers r2-41 within the framework of a “two-pressure 
model (taking into account radial small-scale motion around the bubble). Papers 

[5-81 are devoted to the propagation of small disturbances and shock waves in 
such media. Paper [S] contains an interesting analysis of fundamental physical 
phenomena in a fluid containing gas bubbles. 

1. Let us examine the heterogeneous mixture of two compressible phases or substances 
in each of which there are no effects due to rigidity. The second phase is present in the 

form of individual spherical inclusions (bubbles, particles, drops) of equal radius a. The 
direct interaction (for example collisions) between inclusions can be neglected. The 

first phase is the carrier medium. It is assumed that the fundamental assumption of 

mechanics of continuous media is valid, i. e. that the distances over which the flow para- 
meters of the mixture change substantially (outside of the surface of discontinuity) are 

much greater than the characteristic dimensions of the mentioned inclusions and of dis- 
tances between them. This allows us to describe the dispersed mixture as the sum of fWO 

(or more, if the dimensions of inclusions can be represented in the form of a, discrete set 

of values) continua which occupy the same volume. In each point of the volume which 
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is occupied by the mixture it is possible to introduce macroscopic velocities of phases 
yi,pressures pi, volumetric content of phases ai average densities pi , etc. 

p = p1 + ps, a, + a, = 1, ai > 0, pi = pTai, a, = Vuna3n (1.1) 

Here p is the density of the mixture, pi0 is the true density of the substance of the ith 

phase (of the i th component), n is the number of suspended particles (bubbles) in the 
unit volume of the mixture. Following paper Cl], the differential equations for mass and 

momentum of each phase, and also an equation for the number of particles, are repre- 

sented in the form 

api 
(1.2) z+V(P~vd=Jji-J~ii, g + v @v*) = $ 

P- 
vi 
- = Vk’Jik C rji f Jji (Frji - ri) - Jij (vi, - VJ + piFi ’ dt 

4 
dt= g-+vg= & + vikVk = + + Vik 5; rji = - rij, i, i = i,2; i # i) 

Here and in the following text, summation is only over the superscripts relative to coor- 
dinate axes. Further, Jil are “observable” macroscopic rates of phase transformation 
(Jij > 0), which only give the rate of formation of the jth phase (in the opposite case 
Jil = 0) at the expense of the i th phase per unit volume and time, The quantity Vij 
characterizes the momentum of the mass which is undergoing the phase transition i --t j; 

9 characterizes the change in the number of particles of the dispersed phase due to pro- 
cesses of breaking conglomeration or formation of new inclusions. In this paper the case 

will be examined where such processes are absent, i.e. 

$=O (1.3) 

Further, rji is the interaction force between phases with reference to a unit of mixture 
volume ; Pi are external mass forces ; Ui is the tensor of surface forces acting on the 

i, th phase. 
For dispersed systems where the volumetric content of the suspended phase as is suffi- 

ciently small we can assume [l] 

I# = _ J&’ + #, O%kl = 0 (1.4) 

here W is the Kronecker symbol, PI and hkz are the pressure and the tensor of viscous 
stresses of the carrier medium. The latter is determined by the external rate of defor- 

mation tensor 
elk1 = L 

2 ( 

aPlk ad 
31’+as” 

) 
(1.5) 

The effect of displacements on interphase boundaries can be taken into account through 

corrections in the coefficients of viscosity. The interaction force between phases rll are 
represented in the form 

ru=f,+f,+f,--3LIvPI=fl+r-CIZvpl, r=f;+ f, U.6) 

where ft is the friction force (Stokes force) between phases due to viscous forces, f,,, is 
the force of “associated” masses, P, is the force due to gradients in the velocity field 

of the carrier phase VI (Magnus or Zhukovskii force), the last term %V p1 is connected 
with the influence of the pressure field of the carrier phase on the inclusions (Archimedes 
force). For these forces the following relationships can be utilized: 
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f, = arp?K (vr - vs) (R = K (at, I VI - vg I, a, . ..)) (1.7) 
d8 

f m = aw’x’ dt (VI - vd, f, = crrp1*x* (Vl _ vr)xrot Vl 

Coefficients R, x’ and 2’ take into account the effect due to the shape of particles, due 

to their nonsingle behavior, and other factors. The elimination of the term r in (1.6) is 
necessary for later development and is explained by the fact that r is not connected 
directly with effects of viscosity, just as the force of Archimedes. 

2. For later use it is necessary to improve the accuracy of the expression for the energy 
per unit mass of the mixture E; which is composed of the internal energy u and kinetic 

energy k of the medium 
E=u+k (2.0 

In theories of interpenetrating flow (see paper Cl] and appropriate references there) the 
energy of each component is assumed to be proportional to its mass, and the energy of 
the mixture is considered additive according to the mass of the phases 

PU = Plh + f?+zt pk = llsppla + %p& (2.2) 

Such a representation (first equation (2.2)) ignores pecularities if the surface layer with 
a thickness of the order of the radius of molecular interaction in the condensed phase 

(appr. IO-9 m) which represents the interface of the phases. This so-called surface or 

capillary effect is taken into account (according to Gibbs) by introducing [9, lo] a sur- 
face. component of internal energy of mixture (and correspondingly some additional 
surface or capillary phase, which sometimes is referred to as the o-phase) proportional 
to the interface of phases 

PU = pru1 + P&s + Wl* (z&* = 4duo) (2.3) 

Here u,* and &are surface energies for one inclusion and per unit surface, respectively. 

The latter, just as the internal specific energy of phases ui, is a thermodynamic para- 
meter. Further, we take advantage of the hypothesis of local equilibrium between phases 

and the capillary layer (this allows to introduce the temperatures Ti (i = 1, 2) and 

To), respectively) and the following equations of state : 

ui = ui (pi, Ti), pi = Pi (pit J’J, si = si (pit TJ 

T 
do d3 

U,=d- =dT,’ sa=- rlT,’ 
Q = 5 (T,) (2.4) 

where si and s, are the respective specific entropies of the phases and the unit surface 

of their interface and o is the coefficient of surface tension which depends on temper- 
ature and the material of both phases. The introduction of the concept of the o-phase 

can be related to not only the capillary effect but also to the consideration of special 

properties of thin layers around inclusions of a different character (for example, a flame 
around a burning particle when this flame has a temperature substantially different from 
the temperature of both the particle and the carrier medium). 

Equations of state (2.4) obey the Gibbs relationships 

=$+pi 25, dzu ’ T,fk$=_$_6 + (4na’) (2.5) 

The kinetic energy of the mixture is presented in (2.2) only through the energy of the 

macroscopic motion of the phases with velocities vi. In some cases (especially in the 
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case of motion of a fluid with bubbles, or in general, when the density of the material 
of the carrier phase Pro is greater than or of the same order as the density of the mate- 
rial of the suspended phase pa’) it is necessary also to take into account the kinetic 

energy of small-scale flows (with characteristic linear dimensions equal to the order of 
the dimensions of inclusions), the macroscopic momentum of which is equal to zero. 
This in the first place is the energy of radial pulsating motion around the bubble /i,and 
the energy of perturbations Ic,, which will be called pseudo-rotational.in the carrier phase 
due to relative motion of inclusions within the phase (/c, and /c, are the corresponding 
energies per one inclusion). In this manner we have 

Relationships (2.3) and (2.6) represent the general additivity of internal and kinetic 
energy of the mixture. The other thermodynamic potentials of the mixture (entropy, 
free energy, and others) in this case are also determined in a manner analogous to (2.3). 

We select a fixed volume V, bounded by a stationary surface S . In analogy to [l] 
we define the concept of substantive derivative of the total energy of the mixture. This 

derivative represents the change of energy in a stationary volume which is due only to 
the interaction with the external medium and is not connected with the convective trans- 

port of material, i. e. we have 

(2.7) 

Applying the Gauss-Ostrogradskii formula, the following expression is obtained for the 
substantive derivative of the total energy of the medium: 

dE dt 
P,,=P1 dt 

+ n $- (uo* + k,,+ k,) + (J12 - J& (~2 - ~1 -I- ‘,12 (~2’ - u12)) (2.8) 

For other, in the generalized sense, additive functions which apply to the whole mixture, 

it is also easy to determine the substantive derivatives analogous to (2.8). 

3. Taking into account (1.6). the equation for kinetic energy of the macroscopic 
motion of the medium follows from (1.2) 

p$f$f. + p2 1% = vlvkaik + v2vkb2” - (J,, - J21) v + plF,v,+ 

+ p2F,v, - r12 (vl - v2) + Jzl (~1 - ~2) 
i 
val- “q), - J12 (~1 - ~2) x 

x “1 fvz 
v12- 2 (3.f) 

An analysis of (3. l), (1.2) and the motion of bodies in the fluid shows that the force 
interaction between the phases leads to the following: (1) a transfer of kinetic energy 
of macroscopic motion from one phase to the other ; (2) dissipation of energy of macro- 
scopic motion into internal energy of the mixture (into heat) because of viscous forces 
with the intensity f, ( v1 - J-?); (3) an exchange between the energy of macroscopic 
motion and the energy of small-scale pseudo-rotational flows IZ~, , with an intensity 
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F (vr - VZ); due to the action of components rls which have a “nonviscous” nature 
(Magnus force, effect of associated masses) ; (4) an exchange of energy with the external 
medium due to the pressure gradient VPI, i.e. at the expense of surface forces. 

The absence of an energy concept for small-scale flows in the theories of interpene- 
trating motion makes it necessary to relate the effect noted in point 3, to pure dissipation, 

i.e. to a transfer of kinetic energy directly into heat. We note that in the case of flow 
around the inclusions withsuffuciently highvelocities,additional terms can arise in the force 

r . These terms transform the kineticenergy of macroscopic motion into rotational motion 
in the trail of particles. 

The kinetic energy equation of small-scale motion nk,, which arises due to differ- 
ences in phase velocities, can be written in the form 

dzk, 

“-5 
= r (vl - vz> - nrlol - mu2 (3.2) 

As was mentioned previously, here the first term in the right side determines the exchange 

with the kinetic energy of macroscopic motion due to force interaction of phases. The 
second and the third term nqVi (i = 1, 2) determine the dissipation of energy of small- 

scale pseudo-rotational motion into internal (thermal) energy of the first and the second 
phase, respectively. 

As an approximation it is possible to neglect the motion (and dissipation) within the 

inclusions and to determine ~1 as a dissipation function [ll] 

p1*v1 au? a?2 au+ ad a 

%a= 2 
U 

itzj%azjal” t 
vi 

+ 
1 
dV= - p1”vl 

s 
-& w%S (3.3) 

n>o a=a 

(VI is the kinematic viscosity coefficient of the first phase). This function can be deter- 

mined by the velocity field uts(zj) which is generated by the motion of a sphere with the 
velocity ut,in an ideal incompressible fluid. The potential ‘pu and the kinetic energy of 
perturbation Jr0 can be used for the description of the function 

Taking into consideration (3.3) and (3.4), we have 

Q.X = 36nuv,p,“~~~ = 54v,ae2k,, ‘It_% = 0 (3.5) 

4. Let us examine the problem of bubble pulsation in an incom~~ible fluid with 
density pi0 using the Rayleigh formulation [ll] and taking into account phase transitions 
on the interface. This motion is described by the potential of the velocity field V, the 

Cauchy-Lagrange integral a2w a 

4, z-0, 
R 

g!+q++F(t) (4.1) 

and the boundary conditions 

R = a, w= wg, p=po,=po-22ola 

R = 00, 0= 0, P ==P, (4.3) 

Here FO is the pressure in the bubble. Furthermore, the following relationship between 
the velocity a’ of the interface and the mass velocity of the fluid on this surface ZL*~ is 
valid a’ = “a + Gl2 - fnfh" (1.3) 

Here jij is the velocity of phase transformation per unit of surface. The kinetic energy 
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k of the motion which is under consideration and the derivative of this motion with 
respect to time k’ have the form 

00 

3 ‘I 

k = 4np1’ s f R2d R = 2a-~p1”a~w,~, k’ = Qnol”a2w Q 
i 

2 p,_‘?“, -I- awa’ j 
(J.4) 

a 

It follows from (4.1)-(4.4) that 

k’ = &fa2 [(po - 2Cfla - P,) wa + ‘I2 (i2l - ilZ) wa”l (3.5) 

The effect of viscosity can be taken into account in a manner which is analogous to 

(3.3). Into the right side of (4.5) we introduce a dissipation function which is determined 

by the velocity field (4.1) 
Q,I = 16np,“v,awa2 = 8v1kam2 (‘1.6) 

In this manner we obtain a kinetic energy equation 

k’ = 4naz [(p,, - 2ala - p m) wa + l/z (jzl - j12) wo21 - 8v,kam2 (4.5) 

which corresponds to the generalized equation of Lamb for the pulsation of a small bub- 
ble in an incompressible fluid, taking into account surface tension, phase transitions, and 

viscous dissipation 3 
- wa2 + awa’ + 2 

2 (ilz - izl) w 
PI0 

= PO - po;, -20/a _ $ 
a PI0 a wa (4.5) 

The relationship for the energy change of small-scale pulsating radial motion in a two- 

phase system will be specified. We shall proceed from Eqs. (4.7) or (4.8). We will con- 

sider them as kinetic relationships and make the following identifications: the pressure 

distant from the bubble (p,) and the pressure inside the bubble (p,,) are identified 
with the pressure of the first (p,) and second (p,) phase, respectively ; the quantity k 
is identified with the kinetic energy of the pulsating radial motion kD for one inclusion ; 
the velocity w, is identified with the velocity wD1 which determines the radial velocity 
of the carrier medium on the interface of phases. As a result we have 

p1= 
Fz-PI-b/a 4~1 -- 

PI0 a %I 

dza 
yji = WPl 

JE - Jzl 
+- 4nnpl”aa (4.9) 

The equation for the energy of small-scale radial motion corresponding to Eq. (4.9) is 

dzk 
n -$ = 4na2n (pz - p1 - 25/a) wpl - nqp2 - nrlp1 (4.10) 

k, = 2~p10ayw,,l‘), qpl = 8v,k,ae2, qpz = ‘ia (J,, - J,,) wp12n-1 

The first term in the right side of (4.10) describes the transition of kinetic energy into 
energy of compression and surface tension and the reverse. The second term describes 
the inflow (due to the transition, 2 --f 1) or the sink (due to the transition 1 -+ 2) of 
kinetic energy at the expense of the internal energy of the second phase. Finally, the 
third term describes the dissipation of kinetic energy into internal (thermal) energy of 
the first phase. 

6. For further determination of the behavior of the system it is necessary to utilize the 
equations for inflow of heat of each phase [12j. In the general case these equations can 
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be represented in the form 

415 

diui 
Pi dt = PiAi - J&,ji - J+ixi,ij - qio - vqi + PiQi 

c&u,,’ 
n- = nA, - J12xo,12 - dt J2~a.n + aa + qza 

(i, j = 1,2; i # i) 

(5.1) 

Here Ai (i = 1, 2, o) represents the power of internal forces per unit mass of the 
phase or per one inclusion, respectively. The remaining terms represent the inflow of 

heat; xl,ji (I! = ‘i, 2, IS; i,j=l,Z; i#j) istheheatflowfromthe lthphase 
to the material which has undergone the transformation i + i with reference to the 

mass of the material; qio = - qoi is the heat flow per unit volume of mixture from 
the ith phase to the interface unrelated to phase transitions; qi and PiQi are the exter- 
nal surface heat flow (thermal conductivity and radiation) and the power of volume 

heat sources, respectively. 

For dispersed systems which we are studying it usually can be assumed that 

91 = - ~vTI, qz = 0, Qi, = 4na2nPi (Ti - To) (5.2) 

where hi is the coefficient of thermal conductivity of the material in the t th phase, pi 
is the coefficient of heat transfer from the interface to the i th phase, For this coeffici- 

ent we can use experimental relationships of the form 

*Nu, i = F, (*PI’, i’ *Rd 

2P.a 
N --A, N 

cpi yiPio 
N&i- hi Pr, i=7* 

NRe=21v1-$2ta) 

(5.3) 

where cPl is the heat capacity at constant pressure of the i th phase. 
In general the determination of the so-called work of internal forces of each compo- 

nent is connected with the description of the behavior of each inclusion. This becomes 

an insurmountable (and for the description in the average an unnecessary) task under 

conditions which are studied here where the number of such inclusions is large. There- 
fore, following [l], the power of internal forces of the phase are given as an average 

quantity in terms of the macroscopic parameters proceeding from the analysis of the 

motion of the body in the fluid and the developed relationships (3.1). (3.2) and (4.10) 

a.p. d.p.” 
PiAi = 3% $- ITikzeikz $- Xif, (~1 - VJ + nqpi + nv,.. + J,fi (vfi i vi)2 - 

_ Jjj (Vif 2 vJ2 

(x1+x2=1; i,j=i,2; i#j) (5.4) 

Here the first term is due to the work of internal pressure forces and compressing the ith 

phase (reversible work). The remaining terms represent the energy dissipation (uncom- 
pensated heat) in the i.th phase as a result of internal viscous forces which arise due to 
gradients in the average velocity field (tlk’elkz, where elk’ is the deformation tensor 

determined by the velocity field vl), due to viscous interaction with the other phase 

&if, (vi- vs)), due to shear deformation as a result of radial and pseudo-rotational 
small-scale flow (7Zqpi and nqDi) , and finally due to irreversible momentum transfer 
in phase transformations [l] (last two terms). The coefficients xi indicate the share of 
dissipation due to Stokes force f, , of kinetic energy of the macroscopic motion of the 
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mixture. This share is transferred directly into the internal energy of the ith phase. In 
many cases where we can neglect the shear deformations of the inclusions with respect 
to the shear deformations of the carrier medium, the following relationships are valid : 

X1=1, x, = 0, Vat = VI2 = k-2 (5.5) 

The power due to internal forces of the b-phase can be represented in the following 

form )9, 301 AS= 43&+&as 2 (5.6) 

This corresponds to the work of internal forces in a spherical uniformly stretched elastic 
film in which the tension per unit length is equal to cr. 

Proceeding from definition (2.8) and the equations for the energy components of the 

mixture (3.1). (3.21, (4. lo), (5.1) and taking into account (X.4). (1.6). we obtain the 
explicit expression for the substantive derivative of the total energy of the mixture 

dE 
p d6 

- = J,, 

--21 UC--- C Ul + ha1 -I- x2,21 + x0,21) + Pz (+--$-j++$+ 
- VA &vr -f- a4 + vkC%L - vql -f- ~tF,v, f ,0,F,vz f P, Ql + P~QS 

The total energy of the medium can change only as a result of external iu~uences 
(described by the last eight terms), but in no way as a result of internal processes. There- 

fore, the expressions in brackets in the right side of (5.7) which have the nature of 

sources connected with phase transitions, must be equal to zero. i. e, 

(ii = uj + PjlPj', i =: 12) (5.8) 

Here. 4:is the enthalpy of the corresponding phase. 

In order to obtain a concrete model, it is necessary to determine the energies %~,;j 

which determine the energy loss of the Ith phase in the transformation i -+ j of a unit 
mass for the case of known total (with respect to I) effects (5.8). These supplementary 
relationships (analogous to the functions for accommodation coefficients in the kinetic 
theory of gasses where these functions reflect the interaction of the medium with sur- 

faces) must be postulated. 
As a possible variation of this type of relationship , some generalization of functions 

(1 J which were applied to the two-phase medium with equal pressures of phases (pl = pz) 

and in the absence of capillary effects can be used. That is, the ~latio~hi~ for zr,ij 
which in some analogy to the kinetic theory of gasses can be called accommodational, 
have the form : 

x1,1? = ins (PL) - ir, 
P‘J - PI 2rr 

x2,12 = iz - i2, @2)- --p- , %,12 = ap8 

P2 - P‘I 23 

2~ = il, (p2) - is, x1,21 = il - i, (~2) + 0 . 2 
Pl 0,21=-apl" 

(5.9) 

Here the subscript 8 refers to the state of saturation above a planar interface’of phases, 
The utilization of characteristic enthalpies of phases ijs in (5.9) at the saturation con- 
dition taken for the pressure &is explained by the fact that the phase transitions take 
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place at the interface, on one side of which the pressure is equal to pa and on the other 
side to pz - 2a I a. 

The most significant feature shown in (5.9) is that the energy which is equal to the 
heat of transition i + j, is primarily provided by the i’th phase. Another possible and 
sometimes more convenient variation of accommodation relationships is 

%,,a = x2,12 = %,21 = x2,21 = 07 G&12 = - 5a,21 = 12 - 4 - (Pa - 

- Pl - 20/a) I pp (5.10) 

Equations (5.10) give the role of a source or sink of heat, which is required in phase 

transitions, to the surface phase. We note that the presence of the “reverse” coupling 
of the o-phase with the first and the second phase due to qaol and qaa leads to a situation 

where the additional heat source or sink in the u-phase in comparison with (5.9) is 

compensated by heat flow from the direction of the first and second phase. The actual 

results obtained through (5.9) and (5.10) are quite close to each other. 
In this manner the system of equations which describes the interpenetrating motion 

of two-phase dispersed mixture taking into account small-scale motion around the inclu- 

sions, difference in pressure between phases, compressibility of phases,and phase transitions 

on existing interfaces, has the form 

g + v (~1~1) = J,, - J129 ‘g = wpl + &$ 

g + v (~2~2) = J,, - J219 g + v (nv2) = 0 

d1v1 
-= 

p1 dt 
k k 

-+m+v f,.---r --f + J21tv2, - vd - J12 (~12 - ~1) +pP, 

dzvz 
P2dt = -a2wl +r + ff - J21P21- ~2) + J12 (~12 - ~2) + 132Fa 

dako 
TiF = r (1-1 - v2) - nq,l - nqv2, r = f, + f, 

dml ~1~1 dlpl’ 
fAdt=pl”dt + qktelrz + x,ff (vl - s,) + nqDl + 16nnpl”~,aw,,2 + 

+ J,, @” ; v1)2 - J,, @12 ; vl)s - J2121,21- Jl2+1,12 - qla - vq, + olQr 

dzuz 
P2 7 = 

U?F2 dzpz” 
pzo dt + x2fi (vI - v?) + ~2~3~~ + ++ wp12 - Jsl (vzl ; v2)o. + 

+ JIM @" ;- w - J2152.21- J1252,12 - q2a + ~aQz 

&nazdG = qla + q2o - J21+1- J1250,127 U,=s(T+T& 

Pi = Pi (Pi09 T,), z&i = z&i (p:, Ti) (i = 1,2) &11) 

(al + uz = 1, a2 = P/3fina3, pi = pioai (i = 1,2), xi -I- X-2 = 1) 

Relationships ofthe type(1.7),(3.5),(5.2),(5.3).(5.5).(5.9) or(5.10)WW intO 
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account (5.8)) or their generalizations together with equations of kinetics of phase 
transformations (for Jij) with given external interactions (Fi, Qi) close to system of 

equations (5.11) in the domain of continuous motion. 
It is important to note that if V~.J = v21 (the most likely case) and if the accommo- 

dation relationships (5.10) are assumed, then the necessity of introducing “observed” 

velocities of phase transitions separately for transformations 1 --t 2 (.I,,) and 2 --f 1 
(J,,) is eliminated. In this case all effects of phase transformations in all equations 
(5.11) can be taken into account in the form of terms with the factor 

J = J12 - J,, (5.12) 

so that effects of two possible directions of phase transitions are taken into account 

through a change in sign for the velocity of the resulting reaction J. 

6. In analogy to (2.3) we have the generalized additivity for the entropy of the mix- 

ture PS = Pial + p2s2 + ns,* (6.1) 

For this mixture the expression of substantive derivative (2. 8) which represents the 

change of entropy of the mixture in a fixed volume purely due to the interaction with 
the external medium and the interaction of internal processes, has the form 

ds 
Px=P1 

$+p2Jg+,T + VI2 - J21) (~2 -sd (6.2) 

Taking advantage of the Gibbs relationships (2.5) which reflect the local equilibrium 

of phases, and also using the equations for inflow of heat which enter into system (5.11), 
we have 

X Xl\21 
21 = Sl - s2I--- - - x2.21 %21 (VSI - v1)2 _ 2 

Tl T2 T + 2T1 
(v-21- vz)" + 20 

Pl 

0 2Tz 

-Xl2 = s2 _ s, - x* - xT - xF - (v~22;lvl’z + (VI2 - v2)? + ug 
2Tz (6.3) 

0 
The first three terms here determine the entropy change due to energy exchange with 

the external medium. The remaining terms (always nonnegative), which represent the 

products of thermodynamic forces with thermodynamic fluxes [12], determine the dis- 
sipation function. This function gives the generation of entropy due to internal irrever- 

sible processes within and between phases. 
We introduce the notation 

8i = 
Ti - T&p:) Ts (~1) - T, (~4 

Ts (p-1 
(i = 1,2, s), es1 = T, (~4 (6.4) 

Here 7, (p) is the saturation temperature for a planar interface. In the case of small 

deviations of tempertures of phases Ti and T, (pl) from T, (p2) (i. e, 1 ei 1, j es1 1 (( 1) 
and incompressibility of the carrier phase (~1” = con&) the linearized equations of 

state for the constituents have the form 

s1 (p1, T,) = 36 (PI) + Cpl (4 - %I) 

i, (pl, I',) = i,, (P,) + c,,l (% - es,) T, (~2) (6.5) 
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~2 (~2, T2) = t’ils h> - cPl f%, + 1 (~2) / T, (~2) + cP2ea 

i2 (~2, T2) = 4, (A) + lb2) + Cc,292 - cplQ,J T, (~2) + (~2 - PJIPI 

Here I (p) is the heat of equlibrium transition 1 --t 2 on the planar interface (in the 
case of a fluid with bubbles i > 0); cpl and cp2are heat capacities of phases at con- 
stant pressure. 

From (6.3) and (6.5) we obtain expressions, which are linearized with respect to quan- 
tities characterizing the nonequilibrium of pressure and temperature, for the thermody- 

namic forces of transitions 2 + 1 and 1 --f 2 

(,21 = ‘vs--lvl’~ _ (V81 - ;;2+ WP12 ) (p,2= _ cvn;lvd2 + w2 - y2+ WP9) 

The quantities ‘p2t and ‘pi2 take into account the effect of velocity nonequilibrium on 

phase transitions. In the case of an equilibrium system we have 

V,=v2=V12=Vzr=Wpl=0, T1 = T, = T,,, Pr = 24 -I- 2Wa 

x,, = x2, = 0 (6.7) 

The known fact follows [9] that the equilibrium temperature T,’ (pz) of transitions 

2 --f 1 on a curved surface of radius a is 

Ts” (~2) = T, (~2) [’ + &)] (6.8) 

For accommodation relationships (5.9) the expressions (6.6) assume the form 

If we take into account the obvious inequalities 

J ij > O, J,jXij > 0 (6.10) 

we can examine the linear equations of kinetics for the rates of phase transitions 

Jij = Lij Xjj (Xij > O), Jij = 0 (Xij < 0) 

(Lii > 0; i, j = 1,2; i # j) (G.11) 

In the case of accommodation relationships (5.10) and vql = vrs the linearized rela- 
tionships (6.6) for the thermodynamic forces have the form 

I tp2) To - Ts” ((-.2) 
x = Xi, = - x’s, = Tj 

T, (~4 + ‘pl2 (G.12) 
s 

The linear equation of kinetics (6.11) can be reduced to an expression for the resultant 

rate of phase transitions J = J,? _ J?l = Lx 
(L > 0) (6.13) 

In a large class of problems we can neglect capillary effects (quantities 20/a, u,“) 
or at least the heat capacity of the a-phase (the quantity 4nna2d,u, / dt). Then the 
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equation for heat inflow of the surface phase transforms into a finite algebraic equation 
with respect to T,, which according to (6.12) influences the rate of phase malformations 

$0 i &n - J&, 21 - Ji? &, 15 = 0 (6.14) 

For example in the case (5.10) taking into account (5.2), we have 

4nna2 Ip, (T, - I’,) + I& (T, - To)1 - J Ii, - i, - (pz - p1 _ 

- 2da) / p,“j = 0 (6.15) 

The obtained results can be generalized for the case of a polydispersed system if the 

dimensions of inclusions are described by some distribution function. A generalization 

is also possible to the case where the phases represent homogeneous mixtures of several 
components entering into chamical reactions. 

In the equations describing the phase interactions (for example in (1.7). (3,5), (4.10)) 
we can take into account with some additional complication, the effect of multiple 
inclusions using the concepts of the regular “cell” model [13]. We can also take into 

account the effect of compressibility of the carrier phase on the small-scale pulsating 
motion. 
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